Dodd-Bullough equation, boundary condition and nonlocal conservation laws

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 L365
(http://iopscience.iop.org/0305-4470/32/31/103)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:38

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Dodd-Bullough equation, boundary condition and nonlocal conservation laws

Mousumi Saha and A Roy Chowdhury
High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta 700 032, India

Received 16 February 1999

Abstract

We have reconsidered the integrability of the Dodd-Bullough equation in the presence of the boundary condition. It is shown that the boundary condition itself can be deduced from the Lax equation. The forms of the infinite number of nonlocal conservation laws are shown to change due to the presence of the boundary condition.

Integrable systems have been studied for the last few decades mainly from the viewpoint of Hamiltonian structure, symmetry, and quantization [1]. But it should be mentioned that the majority of such studies deal mainly with the problem on the full real line. The importance of the boundary condition has been realized only very recently. The first major step was taken by Sklyanin [2] who showed how effectively one could introduce a boundary condition and still retain integrability. He also gave an elegant prescription for the quantization of the system with the use of the corresponding classical and quantum γ-matrix. Of late, another approach has been put forward by Habibullin and others [3] to study the compatibility of a boundary condition through the use of Lie-Backlund symmetry [4] or otherwise [5]. In the present work we show how the required boundary condition itself can be deduced from a modified version of the Lax pair and how it effects the form of nonlocal conservation laws for the well-studied system Dodd-Bullough equation [6].

The equation under consideration can be written as

$$
\begin{equation*}
\partial_{+} \partial_{-} \phi=2 \mathrm{i} \pi \beta[\exp (\mathrm{i} \beta \phi)-2 \exp (-2 \mathrm{i} \beta \phi)] \tag{1}
\end{equation*}
$$

for which the Lax pair is written as

$$
\begin{align*}
& A_{+}(\lambda, x)=-\frac{\beta}{2 \mathrm{i}} \partial_{+} \phi H_{1}-\sqrt{2 \pi} \beta \exp \left(\frac{\mathrm{i}}{2} \beta \phi\right) \lambda F_{1}-2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) F_{2} \\
& A_{-}(\lambda, x)=\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi H_{1}+\sqrt{2 \pi} \beta \exp \left(\frac{\mathrm{i}}{2} \beta \phi\right) \lambda^{-1} E_{1}+2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) E_{2} \tag{2}
\end{align*}
$$

where ∂_{+}and ∂_{-}are derivatives with respect to the light cone coordinates and $\left(H_{1}, F_{1}, E_{1}, F_{2}, E_{2}\right)$ the generators of the algebra. The generators have the matrix form written as
$H_{1}=e_{11}-e_{33} \quad F_{1}=e_{21}-e_{32} \quad E_{2}=e_{31} \quad E_{1}=e_{12}-e_{23} \quad F_{2}=e_{13}$
where $e_{p q}$ is a 3×3 matrix with one at the intersection of the p th row and q th column and zero elsewhere. The Lax equations leading to equation (1) are

$$
\begin{equation*}
\left(\partial_{ \pm}-A_{ \pm}\right) \psi\left(x_{+}, x_{-}\right)=0 \tag{4}
\end{equation*}
$$

The compatibility condition of these reduces to

$$
F=\partial_{+} A_{-}-\partial_{-} A_{+}+\left[A_{-}, A_{+}\right]=0 .
$$

It is interesting to observe that we can have another set of Lax pairs for the same equation (1), which can be written as,

$$
\begin{equation*}
\left(\partial_{ \pm}-\bar{A}_{\mp}\right) \tilde{\psi}=0 \tag{5}
\end{equation*}
$$

where the consistency reads

$$
\begin{equation*}
\tilde{F}=\partial_{+} \bar{A}_{+}-\partial_{-} \bar{A}_{-}+\left[\bar{A}_{+}, \bar{A}_{-}\right]=0 \tag{6}
\end{equation*}
$$

with
$\bar{A}_{+}(\lambda, x)=-\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi H_{1}-\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda F_{1}-2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) F_{2}$
$\bar{A}_{-}(\lambda, x)=\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi H_{1}+\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda^{-1} E_{1}+2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) E_{2}$.
To introduce the boundary conditions compatible with the complete integrability of the system we modify the gauge fields in the following manner:

$$
\begin{align*}
& A_{+}=\theta\left(x_{1}\right) A_{+}(\lambda, x) \\
& \bar{A}_{+}=\theta\left(x_{1}\right) \bar{A}_{+}(\lambda, x) \\
& A_{-}=\theta\left(x_{1}\right) A_{-}(\lambda, x)-\delta\left(x_{1}\right)\left[f_{1} H_{1}+\lambda^{-1} f_{2} E_{1}+f_{3} E_{2}\right] \tag{8}\\
& \bar{A}_{-}=\theta\left(x_{1}\right) \bar{A}_{-}(\lambda, x)-\delta\left(x_{1}\right)\left[f_{1} H_{1}+\lambda^{-1} f_{2} E_{1}+f_{3} E_{2}\right]
\end{align*}
$$

where $\theta\left(x_{1}\right)$ is the step function such that $\theta\left(x_{1}\right)=1$, for $x_{1}>0$ and equal to zero for $x_{1}<0$. Here x_{1} is the point of the real line where we want to impose the boundary condition, and f_{1}, f_{2}, f_{3} are the three unknown functions to be determined and used in the boundary condition. We now impose the condition that

$$
\begin{equation*}
\left.(F-\tilde{F})\right|_{x_{1}=0}=0 \tag{9}
\end{equation*}
$$

Collecting the coefficient of E_{2} in equation (9) we get

$$
\begin{equation*}
\left(\partial_{+}+\partial_{-}\right) f_{3}=\frac{\beta}{2 \mathrm{i}} f_{3}\left(\partial_{+}+\partial_{-}\right) \phi \tag{10}
\end{equation*}
$$

whereas the coefficient of F_{1} yields

$$
\begin{equation*}
f_{1}=0 \tag{11}
\end{equation*}
$$

On the other hand, the coefficient of E_{1} leads to

$$
\begin{equation*}
\left(\partial_{+}+\partial_{-}\right) f_{2}=\frac{\beta}{2 \mathrm{i}} f_{2}\left(\partial_{+}+\partial_{-}\right) \phi \tag{12}
\end{equation*}
$$

So equations (10)-(12) complete the determination of the unknown functions f_{1}, f_{2}, f_{3}. It is then interesting to observe that the coefficient of F_{2} gives us the boundary condition

$$
\begin{equation*}
\left(\partial_{+}-\partial_{-}\right) \phi=2 \sqrt{\pi}\left(\sqrt{2} \mathrm{e}^{-\frac{3 \mathrm{i} \beta}{2} \phi}-\mathrm{e}^{\frac{\mathrm{i} \beta}{4} \phi}\right) \tag{13}
\end{equation*}
$$

at the point $x=x_{1}$.
Let us now write the Lax equations

$$
\begin{array}{ll}
\left(\partial_{+}-A_{+}\right) \psi=0 & \left(\partial_{-}-A_{-}\right) \psi=0 \\
\left(\partial_{+}-\bar{A}_{-}\right) \tilde{\psi}=0 & \left(\partial_{-}-\bar{A}_{+}\right) \tilde{\psi}=0 \tag{14}
\end{array}
$$

in full form and convert them to the Riccati equation in the variables

$$
\begin{equation*}
V_{1}=\psi_{2} / \psi_{1} \quad V_{2}=\psi_{3} / \psi_{1} \quad \text { and } \quad u=\log \psi_{1} \tag{15}
\end{equation*}
$$

and similarly for the barred variables, whence we get
$\partial_{+} V_{1}-\theta\left(x_{1}\right)\left[\frac{\beta}{2 \mathrm{i}} \partial_{+} \phi V_{1}+2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) V_{1} V_{2}-\sqrt{2 \pi} \beta \times \exp (\mathrm{i} / 2 \beta \phi) \lambda\right]=0$
$\partial_{+} V_{2}-\theta\left(x_{1}\right)\left[-\mathrm{i} \beta \partial_{+} \phi V_{2}+\sqrt{2 \pi} \beta \exp \left(\frac{\mathrm{i}}{2} \beta \phi\right) \lambda V_{1}+2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) V_{2}^{2}\right]=0$
$\partial_{-} V_{1}+\theta\left(x_{1}\right)\left[\sqrt{2 \pi} \beta \exp \left(\frac{\mathrm{i}}{2} \beta \phi\right) \lambda^{-1} V_{2}+\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi V_{1}+\sqrt{2 \pi} \beta \exp \left(\frac{\mathrm{i}}{2} \beta \phi\right) \lambda^{-1} V_{1}^{2}\right]=0$
$\partial_{-} V_{2}+\theta\left(x_{1}\right)\left[-\mathrm{i} \beta \partial_{-} \phi V_{2}+\sqrt{2 \pi} \beta \exp \left(\frac{\mathrm{i}}{2} \beta \phi\right) \lambda^{-1} V_{1} V_{2}-2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi)\right]=0$
$\partial_{+} U+\theta\left(x_{1}\right)\left[2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) V_{2}+\frac{\beta}{2 \mathrm{i}} \partial_{+} \phi\right]=0$
$\partial_{-} U-\theta\left(x_{1}\right)\left[\sqrt{2 \pi} \beta \exp \left(\frac{\mathrm{i}}{2} \beta \phi\right) \lambda^{-1} V_{1}+\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi\right]=0$
for the region $x_{1} \neq 0$.
As a consequence of the two conditions valid away from the boundary, using $\partial_{+} \partial_{-} U=$ $\partial_{-} \partial_{+} U$ and similarly $\partial_{+} \partial_{-} \tilde{U}=\partial_{-} \partial_{+} \tilde{U}$, we get the conservation equations valid at a general point x :

$$
\begin{align*}
\partial_{+}\left[\theta\left(x_{1}\right)\{ \right. & \left.\left.\sqrt{2 \pi} \beta \exp \left(\frac{\mathrm{i}}{2} \beta \phi\right) \lambda^{-1} V_{1}+\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi\right\}\right] \\
& =-\partial_{-}\left[\theta\left(x_{1}\right)\left\{2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) V_{2}+\frac{\beta}{2 \mathrm{i}} \partial_{+} \phi\right\}\right] \tag{18}
\end{align*}
$$

along with
$\partial_{-}\left[\theta\left(x_{1}\right)\left\{\sqrt{2 \pi} \beta \exp \left(\frac{\mathrm{i}}{2} \beta \phi\right) \lambda^{-1} \tilde{V}_{1}+\frac{\beta}{2 \mathrm{i}} \partial_{+} \phi\right\}\right]$

$$
\begin{equation*}
=-\partial_{+}\left[\theta\left(x_{1}\right)\left\{2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) \tilde{V}_{2}+\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi\right\}\right] . \tag{19}
\end{equation*}
$$

Let us now consider (16a) and (16b) and substitute

$$
V_{1}=\sum_{n=1}^{\infty} \lambda^{n} a_{n} \quad V_{2}=\sum_{n=1}^{\infty} \lambda^{n} b_{n}
$$

which yields
$\partial_{+} a_{r}-\theta\left(x_{1}\right)\left[\frac{\beta}{2 \mathrm{i}} \partial_{+} \phi a_{r}+2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) \sum_{k=1}^{r-1} a_{k} b_{r-k}\right]=0$
$\partial_{+} b_{r}-\theta\left(x_{1}\right)\left[\frac{\beta}{2 \mathrm{i}} \partial_{+} \phi b_{r}+\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) a_{r-1}+2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) \sum_{k=1}^{r-1} b_{r} b_{r-k}\right]=0$.
If we assume $x_{1}>0$ then (20) and (21) lead to
$a_{1}=-\sqrt{2 \pi} \beta \mathrm{e}^{\frac{\beta}{2 \mathrm{i}} \phi} \int_{-\infty}^{x_{+}} \mathrm{e}^{\mathrm{i} \beta \phi} \mathrm{d} x_{+}$
$b_{1}=\mathrm{e}^{-\mathrm{i} \beta \phi}$
$a_{2}=2 \sqrt{2} \pi \beta^{2} \mathrm{e}^{-\frac{\mathrm{i} \beta}{2} \phi} \int_{-\infty}^{x_{+}} \mathrm{e}^{-3 \mathrm{i} \beta \phi}\left(\int_{-\infty}^{x_{+}^{\prime}} \mathrm{e}^{\mathrm{i} \beta \phi} \mathrm{d} x_{+}\right) \mathrm{d} x_{+}^{\prime}$
$b_{2}=2 \pi \beta^{2} \mathrm{e}^{-\mathrm{i} \beta \phi} \int_{-\infty}^{x_{+}} \mathrm{e}^{\mathrm{i} \beta \phi}\left(\int_{-\infty}^{x_{+}^{\prime}} \mathrm{e}^{\mathrm{i} \beta \phi} \mathrm{d} x_{+}\right) \mathrm{d} x_{+}^{\prime}+2 \pi \beta \mathrm{e}^{-\mathrm{i} \beta \phi} \int_{-\infty}^{x_{+}} \mathrm{e}^{-2 \mathrm{i} \beta \phi} \mathrm{d} x_{+}$
and so on. Since the coefficients can be determined explicitly the infinite number of conserved quantities are completely determined in the presence of the boundary condition but away from the point $x_{1}=0$. However, when one wants to investigate the behaviour of these conservation laws at the point $x_{1}=0$, we use equations (8) with a δ function to construct the Riccati equations. In the present situation we get

$$
\begin{align*}
& \partial_{-} V_{1}=-\theta\left(x_{1}\right) {\left[\sqrt{2 \pi} \beta \exp \left(\frac{\mathrm{i}}{2} \beta \phi\right) \lambda^{-1} V_{2}+\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi V_{1}+\sqrt{2 \pi} \beta \times \exp \left(\frac{\mathrm{i}}{2} \beta \phi\right) \lambda^{-1} V_{1}^{2}\right] } \\
&+\delta\left(x_{1}\right) \lambda^{-1}\left(V_{1}+V_{2}\right) f_{2} \\
& \partial_{-} V_{2}=-\theta\left(x_{1}\right) {\left[-\beta \partial_{-} \phi V_{2}+\sqrt{2 \pi} \beta \exp \left(\frac{\mathrm{i}}{2} \beta \phi\right) \lambda^{-1} V_{1} V_{2}-2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi)\right] } \tag{23}\\
&-\delta\left(x_{1}\right) \lambda^{-1}\left[f_{3}-f_{2} V_{1} V_{2}\right] \\
& \partial_{-} U=\theta\left(x_{1}\right)\left[\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi+\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda^{-1} V_{1}\right]-\delta\left(x_{1}\right) \lambda^{-1} f_{2} V_{1} \\
& \partial_{+} \tilde{U}=-\theta\left(x_{1}\right)\left[\frac{\beta}{2 \mathrm{i}} \partial_{+} \phi+\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda^{-1} V_{1}\right]-\delta\left(x_{1}\right) \lambda^{-1} f_{2} V_{1}
\end{align*}
$$

whereas the equations involving $\partial_{+} V_{1}, \partial_{+} V_{2}, \partial_{-} \tilde{V}_{1}, \partial_{-} \tilde{V}_{2}, \partial_{+} U, \partial_{-} \tilde{U}$ remain unchanged but

$$
\begin{align*}
& \partial_{+} \tilde{V}_{1}=-\theta\left(x_{1}\right)\left[\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda^{-1}\left(\tilde{V}_{2}+\tilde{V}_{1}^{2}\right)+\frac{\beta}{2 \mathrm{i}} \partial_{+} \phi \tilde{V}_{1}\right]+\delta\left(x_{1}\right) \lambda^{-1} f_{2}\left(\tilde{V}_{1}+\tilde{V}_{2}\right) \\
& \partial_{+} \tilde{V}_{2}=-\theta\left(x_{1}\right)\left[-\mathrm{i} \beta \partial_{+} \phi \tilde{V}_{2}+\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda^{-1} \tilde{V}_{1} \tilde{V}_{2}-2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi)\right] \tag{24}\\
&-\delta\left(x_{1}\right) \lambda^{-1}\left[f_{3}-f_{2} \tilde{V}_{1} \tilde{V}_{2}\right] .
\end{align*}
$$

As a consequence of this modified set we deduce the following equations which indicate the change in the form of the conserved quantities. If at $x_{1}=0$, we impose $F \psi=\tilde{F} \tilde{\psi}$ we get

$$
\begin{align*}
& \partial_{-}\left\{\theta (x _ { 1 }) \left[\frac{\beta}{2 \mathrm{i}}\right.\right.\left.\left.\partial_{+} \phi V_{1}+2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) V_{1} V_{2}-\sqrt{2 \pi} \beta \times \exp (\mathrm{i} / 2 \beta \phi) \lambda\right]\right\} \\
&+\partial_{+}\left\{\theta\left(x_{1}\right)\left[\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi \tilde{V}_{1}+2 \sqrt{\pi} \beta \times \exp (-\mathrm{i} \beta \phi) \tilde{V}_{1} \tilde{V}_{2}-\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda\right]\right\} \\
&+\partial_{+}\left\{\theta (x _ { 1 }) \left[\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda^{-1} V_{2}+\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi V_{1}\right.\right. \\
&\left.\left.+\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda^{-1} V_{1}^{2}\right]\right\} \\
&+\partial_{-}\left\{\theta (x _ { 1 }) \left[\sqrt{2 \pi} \beta \times \exp (\mathrm{i} / 2 \beta \phi) \lambda^{-1} \tilde{V}_{2}+\frac{\beta}{2 \mathrm{i}} \partial_{+} \phi \tilde{V}_{1}\right.\right. \\
&\left.\left.+\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda^{-1} V_{1}^{2}\right]\right\} \\
& \quad \partial_{+}\left[\delta\left(x_{1}\right) \lambda^{-1} f_{2}\left(V_{1}+V_{2}\right)\right]-\partial_{-}\left[\delta\left(x_{1}\right) \lambda^{-1} f_{2}\left(\tilde{V}_{1}+\tilde{V}_{2}\right)\right]=0 \tag{25}\\
& \partial_{-}\left\{\theta\left(x_{1}\right)\left[\frac{\beta}{2 \mathrm{i}} \partial_{+} \phi+2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) V_{2}\right]\right\} \\
&+\partial_{+}\left\{\theta\left(x_{1}\right)\left[\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi+2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) \tilde{V}_{2}\right]\right\} \\
&+\partial_{+}\left\{\theta\left(x_{1}\right)\left[\frac{\beta}{2 \mathrm{i}} \partial_{-} \phi+\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda^{-1} V_{1}\right]\right\} \\
&+\partial_{-}\left\{\theta\left(x_{1}\right)\left[\frac{\beta}{2 \mathrm{i}} \partial_{+} \phi+\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda^{-1} \tilde{V}_{1}\right]\right\}-\partial_{+}\left[\delta\left(x_{1}\right) \lambda^{-1} f_{2} V_{1}\right]
\end{align*}
$$

$$
\begin{equation*}
-\partial_{-}\left[\delta\left(x_{1}\right) \lambda^{-1} f_{2} \tilde{V}_{1}\right]=0 \tag{26}
\end{equation*}
$$

And also

$$
\begin{align*}
& \partial_{-}\left\{\theta\left(x_{1}\right)\left[-\mathrm{i} \beta \partial_{+} \phi V_{2}+\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda V_{1}+2 \sqrt{\pi} \exp (-\mathrm{i} \beta \phi) V_{2}^{2}\right]\right\} \\
&+\partial_{+}\left\{\theta (x _ { 1 }) \left[-\beta \partial_{-} \phi \tilde{V}_{2}+\sqrt{2 \pi} \beta \exp \left(-\frac{\mathrm{i}}{2} \beta \phi\right) \lambda \tilde{V}_{1}\right.\right. \\
&\left.\left.+2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi) \tilde{V}_{2}^{2}\right]\right\} \\
&+\partial_{+}\left\{\theta (x _ { 1 }) \left[-\beta \mathrm{i} \partial_{+} \phi V_{2}+\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \times \lambda^{-1} V_{1} V_{2}\right.\right. \\
&-2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi)]\} \\
&+\partial_{-}\left\{\theta\left(x_{1}\right)\left[-\beta \partial_{+} \phi \tilde{V}_{2}+\sqrt{2 \pi} \beta \exp (\mathrm{i} / 2 \beta \phi) \lambda^{-1} \tilde{V}_{1} \tilde{V}_{2}-2 \sqrt{\pi} \beta \exp (-\mathrm{i} \beta \phi)\right]\right\} \\
&+\partial_{+}\left[\delta\left(x_{1}\right) \lambda^{-1}\left(f_{3}-f_{2} V_{1} V_{2}\right)\right]+\partial_{-}\left\{\delta\left(x_{1}\right) \lambda^{-1}\left[f_{3}-f_{2} \tilde{V}_{1} \tilde{V}_{2}\right]\right\}=0 \tag{27}
\end{align*}
$$

which are obviously well defined on the whole line. Note that the forms of the conservation laws given by equations (25)-(27) are very similar to the original one but modified by the presence of boundary terms. If we now substitute the expansions for $V_{1}, V_{2}, \tilde{V}_{1}, \tilde{V}_{2}$ as before then the coefficients can again be determined ab initio. A similar computation can convince one that it effectively means that the original a_{n} are replaced by $a_{n}^{\prime} \theta\left(x_{1}\right)+b_{n}^{\prime} \delta\left(x_{1}\right)$. So, in general, one can conclude that the conserved current contains two parts; one valid for general values of x and the other at the point $x_{1}=0$. Written explicitly it reads

$$
J=J_{1}(x) \theta\left(x_{1}\right)+J_{1}^{\prime}(x) \delta\left(x_{1}\right) .
$$

So from our analysis it is possible to reach a conclusion about the integrability of the DoddBallough equation in the Lax sense, even in the presence of the boundary condition-this condition itself being determined from the consistency condition. Additional information is gained about the structure of the conserved quantities which could not be deduced from the approach adopted by Sklyanin.

MS is grateful to the UGC (Government of India) for a fellowship which made this work possible.

References

[1] Chaudrey P J and Ballough R K (ed) 1985 Solitons-Current Topics in Physics (Berlin: Springer)
[2] Sklyanin 1988 J. Phys. A: Math. Gen. 212389
[3] Habibullin I, Giurel B and Giurses M 1994 Phys. Lett. A 190231
[4] Olver P J 1986 Application of Lie Groups to Differential Equations (Berlin: Springer)
[5] Vekslerchik V E 1993 Phys. Lett. A 174285
Chowdhury A G and Roy Chowdhury A 1995 J. Phys. A: Math. Gen. 28459
[6] Chen Y, Yang H and Sheng Z 1995 Phys. Lett. B 345149

