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Dodd–Bullough equation, boundary condition and nonlocal
conservation laws
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High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta 700 032,
India

Received 16 February 1999

Abstract. We have reconsidered the integrability of the Dodd–Bullough equation in the presence
of the boundary condition. It is shown that the boundary condition itself can be deduced from the
Lax equation. The forms of the infinite number of nonlocal conservation laws are shown to change
due to the presence of the boundary condition.

Integrable systems have been studied for the last few decades mainly from the viewpoint of
Hamiltonian structure, symmetry, and quantization [1]. But it should be mentioned that the
majority of such studies deal mainly with the problem on the full real line. The importance of
the boundary condition has been realized only very recently. The first major step was taken
by Sklyanin [2] who showed how effectively one could introduce a boundary condition and
still retain integrability. He also gave an elegant prescription for the quantization of the system
with the use of the corresponding classical and quantumγ -matrix. Of late, another approach
has been put forward by Habibullin and others [3] to study the compatibility of a boundary
condition through the use of Lie–Backlund symmetry [4] or otherwise [5]. In the present work
we show how the required boundary condition itself can be deduced from a modified version
of the Lax pair and how it effects the form of nonlocal conservation laws for the well-studied
system Dodd–Bullough equation [6].

The equation under consideration can be written as

∂+∂−φ = 2iπβ[exp(iβφ)− 2 exp(−2iβφ)] (1)

for which the Lax pair is written as

A+(λ, x) = − β
2i
∂+φH1−

√
2πβ exp

(
i

2
βφ

)
λF1− 2

√
πβ exp(−iβφ)F2

A−(λ, x) = β

2i
∂−φH1 +

√
2πβ exp

(
i

2
βφ

)
λ−1E1 + 2

√
πβ exp(−iβφ)E2

(2)

where ∂+ and ∂− are derivatives with respect to the light cone coordinates and
(H1, F1, E1, F2, E2) the generators of the algebra. The generators have the matrix form written
as

H1 = e11− e33 F1 = e21− e32 E2 = e31 E1 = e12− e23 F2 = e13 (3)

whereepq is a 3× 3 matrix with one at the intersection of thepth row andqth column and
zero elsewhere. The Lax equations leading to equation (1) are

(∂± − A±)ψ(x+, x−) = 0. (4)
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The compatibility condition of these reduces to

F = ∂+A− − ∂−A+ + [A−, A+] = 0.

It is interesting to observe that we can have another set of Lax pairs for the same equation (1),
which can be written as,

(∂± − Ā∓)ψ̃ = 0 (5)

where the consistency reads

F̃ = ∂+Ā+ − ∂−Ā− + [Ā+, Ā−] = 0 (6)

with

Ā+(λ, x) = − β
2i
∂−φH1−

√
2πβ exp(i/2βφ)λF1− 2

√
πβ exp(−iβφ)F2

Ā−(λ, x) = β

2i
∂−φH1 +

√
2πβ exp(i/2βφ)λ−1E1 + 2

√
πβ exp(−iβφ)E2.

(7)

To introduce the boundary conditions compatible with the complete integrability of the system
we modify the gauge fields in the following manner:

A+ = θ(x1)A+(λ, x)

Ā+ = θ(x1)Ā+(λ, x)

A− = θ(x1)A−(λ, x)− δ(x1)[f1H1 + λ−1f2E1 + f3E2]
Ā− = θ(x1)Ā−(λ, x)− δ(x1)[f1H1 + λ−1f2E1 + f3E2]

(8)

whereθ(x1) is the step function such thatθ(x1) = 1, for x1 > 0 and equal to zero forx1 < 0.
Herex1 is the point of the real line where we want to impose the boundary condition, andf1,
f2, f3 are the three unknown functions to be determined and used in the boundary condition.
We now impose the condition that

(F − F̃ )|x1=0 = 0. (9)

Collecting the coefficient ofE2 in equation (9) we get

(∂+ + ∂−)f3 = β

2i
f3(∂+ + ∂−)φ (10)

whereas the coefficient ofF1 yields

f1 = 0. (11)

On the other hand, the coefficient ofE1 leads to

(∂+ + ∂−)f2 = β

2i
f2(∂+ + ∂−)φ. (12)

So equations (10)–(12) complete the determination of the unknown functionsf1, f2, f3. It is
then interesting to observe that the coefficient ofF2 gives us the boundary condition

(∂+ − ∂−)φ = 2
√
π(
√

2e−
3iβ
2 φ − e

i3β
4 φ) (13)

at the pointx = x1.
Let us now write the Lax equations

(∂+ − A+)ψ = 0 (∂− − A−)ψ = 0
(∂+ − Ā−)ψ̃ = 0 (∂− − Ā+)ψ̃ = 0

(14)

in full form and convert them to the Riccati equation in the variables

V1 = ψ2/ψ1 V2 = ψ3/ψ1 and u = logψ1 (15)
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and similarly for the barred variables, whence we get

∂+V1− θ(x1)

[
β

2i
∂+φV1 + 2

√
πβ exp(−iβφ)V1V2 −

√
2πβ × exp(i/2βφ)λ

]
= 0 (16a)

∂+V2 − θ(x1)

[
−iβ∂+φV2 +

√
2πβ exp

(
i

2
βφ

)
λV1 + 2

√
πβ exp(−iβφ)V 2

2

]
= 0 (16b)

∂−V1 + θ(x1)

[√
2πβ exp

(
i

2
βφ

)
λ−1V2 +

β

2i
∂−φV1 +

√
2πβ exp

(
i

2
βφ

)
λ−1V 2

1

]
= 0

(16c)

∂−V2 + θ(x1)

[
−iβ∂−φV2 +

√
2πβ exp

(
i

2
βφ

)
λ−1V1V2 − 2

√
πβ exp(−iβφ)

]
= 0 (16d)

∂+U + θ(x1)

[
2
√
πβ exp(−iβφ)V2 +

β

2i
∂+φ

]
= 0

∂−U − θ(x1)

[√
2πβ exp

(
i

2
βφ

)
λ−1V1 +

β

2i
∂−φ

]
= 0

(17)

for the regionx1 6= 0.
As a consequence of the two conditions valid away from the boundary, using∂+∂−U =

∂−∂+U and similarly∂+∂−Ũ = ∂−∂+Ũ , we get the conservation equations valid at a general
pointx:

∂+

[
θ(x1)

{√
2πβ exp

(
i

2
βφ

)
λ−1V1 +

β

2i
∂−φ

}]
= − ∂−

[
θ(x1)

{
2
√
πβ exp(−iβφ)V2 +

β

2i
∂+φ

}]
(18)

along with

∂−

[
θ(x1)

{√
2πβ exp

(
i

2
βφ

)
λ−1Ṽ1 +

β

2i
∂+φ

}]
= − ∂+

[
θ(x1)

{
2
√
πβ exp(−iβφ)Ṽ2 +

β

2i
∂−φ

}]
. (19)

Let us now consider (16a) and (16b) and substitute

V1 =
∞∑
n=1

λnan V2 =
∞∑
n=1

λnbn

which yields

∂+ar − θ(x1)

[
β

2i
∂+φar + 2

√
πβ exp(−iβφ)

r−1∑
k=1

akbr−k

]
= 0 (20)

∂+br − θ(x1)

[
β

2i
∂+φbr +

√
2πβ exp(i/2βφ)ar−1 + 2

√
πβ exp(−iβφ)

r−1∑
k=1

brbr−k

]
= 0. (21)

If we assumex1 > 0 then (20) and (21) lead to

a1 = −
√

2πβe
β

2i φ

∫ x+

−∞
eiβφ dx+

b1 = e−iβφ

a2 = 2
√

2πβ2e−
iβ
2 φ

∫ x+

−∞
e−3iβφ

(∫ x ′+

−∞
eiβφ dx+

)
dx ′+

b2 = 2πβ2e−iβφ
∫ x+

−∞
eiβφ

(∫ x ′+

−∞
eiβφ dx+

)
dx ′+ + 2πβe−iβφ

∫ x+

−∞
e−2iβφ dx+

(22)



L368 Letter to the Editor

and so on. Since the coefficients can be determined explicitly the infinite number of conserved
quantities are completely determined in the presence of the boundary condition but away from
the pointx1 = 0. However, when one wants to investigate the behaviour of these conservation
laws at the pointx1 = 0, we use equations (8) with aδ function to construct the Riccati
equations. In the present situation we get

∂−V1 = −θ(x1)

[√
2πβ exp

(
i

2
βφ

)
λ−1V2 +

β

2i
∂−φV1 +

√
2πβ × exp

(
i

2
βφ

)
λ−1V 2

1

]
+δ(x1)λ

−1(V1 + V2)f2

∂−V2 = −θ(x1)

[
−β∂−φV2 +

√
2πβ exp

(
i

2
βφ

)
λ−1V1V2 − 2

√
πβ exp(−iβφ)

]
−δ(x1)λ

−1[f3− f2V1V2]

∂−U = θ(x1)

[
β

2i
∂−φ +

√
2πβ exp(i/2βφ)λ−1V1

]
− δ(x1)λ

−1f2V1

∂+Ũ = −θ(x1)

[
β

2i
∂+φ +

√
2πβ exp(i/2βφ)λ−1V1

]
− δ(x1)λ

−1f2V1

(23)

whereas the equations involving∂+V1, ∂+V2, ∂−Ṽ1, ∂−Ṽ2, ∂+U , ∂−Ũ remain unchanged but

∂+Ṽ1 = −θ(x1)

[√
2πβ exp(i/2βφ)λ−1(Ṽ2 + Ṽ 2

1 ) +
β

2i
∂+φṼ1

]
+ δ(x1)λ

−1f2(Ṽ1 + Ṽ2)

∂+Ṽ2 = −θ(x1)[−iβ∂+φṼ2 +
√

2πβ exp(i/2βφ)λ−1Ṽ1Ṽ2 − 2
√
πβ exp(−iβφ)]

−δ(x1)λ
−1[f3− f2Ṽ1Ṽ2].

(24)

As a consequence of this modified set we deduce the following equations which indicate the
change in the form of the conserved quantities. If atx1 = 0, we imposeFψ = F̃ ψ̃ we get

∂−

{
θ(x1)

[
β

2i
∂+φV1 + 2

√
πβ exp(−iβφ)V1V2 −

√
2πβ × exp(i/2βφ)λ

]}
+∂+

{
θ(x1)

[
β

2i
∂−φṼ1 + 2

√
πβ × exp(−iβφ)Ṽ1Ṽ2 −

√
2πβ exp(i/2βφ)λ

]}
+∂+

{
θ(x1)

[√
2πβ exp(i/2βφ)λ−1V2 +

β

2i
∂−φV1

+
√

2πβ exp(i/2βφ)λ−1V 2
1

]}
+∂−

{
θ(x1)

[√
2πβ × exp(i/2βφ)λ−1Ṽ2 +

β

2i
∂+φṼ1

+
√

2πβ exp(i/2βφ)λ−1V 2
1

]}
−∂+[δ(x1)λ

−1f2(V1 + V2)] − ∂−[δ(x1)λ
−1f2(Ṽ1 + Ṽ2)] = 0 (25)

∂−

{
θ(x1)

[
β

2i
∂+φ + 2

√
πβ exp(−iβφ)V2

]}
+∂+

{
θ(x1)

[
β

2i
∂−φ + 2

√
πβ exp(−iβφ)Ṽ2

]}
+∂+

{
θ(x1)

[
β

2i
∂−φ +

√
2πβ exp(i/2βφ)λ−1V1

]}
+∂−

{
θ(x1)

[
β

2i
∂+φ +

√
2πβ exp(i/2βφ)λ−1Ṽ1

]}
− ∂+[δ(x1)λ

−1f2V1]
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−∂−[δ(x1)λ
−1f2Ṽ1] = 0. (26)

And also

∂−
{
θ(x1)

[
−iβ∂+φV2 +

√
2πβ exp(i/2βφ)λV1 + 2

√
π exp(−iβφ)V 2

2

]}
+∂+

{
θ(x1)

[
− β∂−φṼ2 +

√
2πβ exp

(
− i

2
βφ

)
λṼ1

+2
√
πβ exp(−iβφ)Ṽ 2

2

]}
+∂+

{
θ(x1)

[
− β i∂+φV2 +

√
2πβ exp(i/2βφ)× λ−1V1V2

−2
√
πβ exp(−iβφ)

]}
+∂−

{
θ(x1)

[
−β∂+φṼ2 +

√
2πβ exp(i/2βφ)λ−1Ṽ1Ṽ2 − 2

√
πβ exp(−iβφ)

]}
+∂+[δ(x1)λ

−1(f3− f2V1V2)] + ∂−{δ(x1)λ
−1[f3− f2Ṽ1Ṽ2]} = 0 (27)

which are obviously well defined on the whole line. Note that the forms of the conservation
laws given by equations (25)–(27) are very similar to the original one but modified by the
presence of boundary terms. If we now substitute the expansions forV1, V2, Ṽ1, Ṽ2 as before
then the coefficients can again be determinedab initio. A similar computation can convince
one that it effectively means that the originalan are replaced bya′nθ(x1) + b′nδ(x1). So, in
general, one can conclude that the conserved current contains two parts; one valid for general
values ofx and the other at the pointx1 = 0. Written explicitly it reads

J = J1(x)θ(x1) + J ′1(x)δ(x1).

So from our analysis it is possible to reach a conclusion about the integrability of the Dodd–
Ballough equation in the Lax sense, even in the presence of the boundary condition—this
condition itself being determined from the consistency condition. Additional information is
gained about the structure of the conserved quantities which could not be deduced from the
approach adopted by Sklyanin.

MS is grateful to the UGC (Government of India) for a fellowship which made this work
possible.
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